5 (Noticeable) Business Benefits of Secure Database Provisioning

“Quality is never an accident; it is always the result of high intention, sincere effort, intelligent direction and skillful execution; it represents the wise choice of many alternatives.”
William A. Foster

I know what you’re thinking.

Chris. Your title looks like it was written to be a corporate whitepaper that I see ads for when I’m browsing social media; it should have a CLICK HERE button, a boilerplate photo of a smiling person holding a pen and it should say something like ‘executives hate them, find out their secret here!’

But something has become immediately obvious to me in the last few months, I still speak to people daily who are forced to:

  • Work in shared development models
  • Work on empty (schema-only) / heavily subset databases
  • Work on old, out of date and/or irrelevant data
  • Make decisions without knowing enough about their data or what they hold

When speaking to them though it becomes immediately obvious that the reason there is no dedicated option available for developers is actually not related to the “traditional” problems that one would expect. You would naturally assume that the reason for not refreshing these environments is because of the large amounts of space or time taken to refresh often enough, or even that ‘we simply cannot due to sensitive PII and regulatory concerns‘.

No. In fact it comes down to, as all things do, time and money.

paid make it rain GIF by Thalia de Jong

In the most recent State of Database DevOps report (2020 that is), a whopping 70% of 2000+ respondents replied that they were using a shared development database and this comes with a whole heap of associated problems, like poor code quality, looser controls around sensitive data and defective deployments. Just these figures alone already point to the solution being to spin up copies for developers on demand and it’s not like we can’t do that. There is SO much technology in the world, across almost all database platforms, that will allow us to virtualize, containerize, sanitize… (effectively all of the ‘izes‘) our databases so that we can have full, safe, realistic copies as frequently as we like. So what is stopping us?

From experience, it’s justification*. People going to senior stakeholders and saying “we need this technology” and hearing a cacophony of classic business challenges back: “but is it broken?”, “do we really NEED it?“, “it costs HOW much!?!“, “how much time will it take to implement?” etc… It’s dev and test hygiene, not a sexy major modernization project like using Azure Arc, using Blockchain or creating Artificial Intelligence. Who cares that developers have to share a database? We’ve got bigger Tofish to fry!

*Sometimes, but much less frequently, it’s down to complexity of implementation – but we’ll leave that one aside for now!

As you will know from my last post on why now is the time to adopt better working practices, it’s important for us to highlight the gains that can be made from newer, updated practices, and why now is not the time to be closing our minds off to a better way of life. It’s not going to be easy to sum this up in 5 points, and there are many other benefits to solid database provisioning but these are in my opinion, the ones that will revolutionize the way you develop.

Very important side note for this blog post: there are lots of subjective key practices, processes and tools that can form part of the “database provisioning process” specifically and they will vary wildly by experience, opinion and company – so for the purposes of the below I will be describing the benefits of a process that involves 3 primary components / steps, given these are the three I tackle most often:

  • Data Identification and Classification / Cataloging
  • Data De-Identification i.e. Data Masking
  • Data Provisioning i.e. Real Time Database Cloning / Provisioning

1 – Increase developer happiness / contentedness

Developers are employed to do 1 thing: innovate. It’s even in the name! Developers are on the cutting edge and are focused on providing value to end users as quickly and efficiently as possible, with shortened release cycles, incremental stories and optimized workflows they can produce this innovation. But a big part of the story is the setup.

Even if you’re working to a more agile methodology it is hard to deliver and test changes which are, in development environments, fundamentally destructive and experimental if you are sharing a workspace with multiple colleagues. Writing on shared Word documents can be frustrating at the best of times, so how can developers be expected to produce high-quality, rigorously tested, game-changing code when at any minute another developer can take the environment down, cause it to run slowly, or overwrite those changes with their own? When you cannot produce changes in an isolated, sandbox environment where they can be individually assessed, re-worked and improved then you have no guarantee that it should be promoted.

All of these sound like arguments that are focused around the production of code, but in fact these issues can all have a huge impact on something that is widely under regarded and scrutinized: developer happiness.

Developers are the people who make stuff go, and without them feeling content and valued in their roles, we can’t expect our productivity and product quality to reflect that – so when developers witness the poor management of their code, something they have worked so hard on as it goes sliding down the priority list or gets rolled back or overwritten etc. they don’t feel motivated to continue doing the best that they can do.

With dedicated environments for dev and test, for different branches, pull requests etc. developers can finally work on innovative and exciting projects, and optimize the code that goes out the door to end users.

2 – Develop a common language about data & make better decisions

It’s very hard to speak about things when you use different language to describe the same thing. That much is obvious. In the United Kingdom alone we have many different words for bread rolls. So when someone comes into a sandwich shop in London and asks for a “Stotty”, can you guarantee that the person serving will know exactly what they mean, exactly when they say it?

The Office Reaction GIF

No. There will be a gap where some translation will be required: some “down-time“, if you will. Now imagine taking something as simple as a bread roll and applying it to an enterprise data estate… you’re going to have a very bad time.

As I talked about in my blog posts here (importance of database classification) and here (classifications role in DevOps) before you can really make a fully informed decision about your data, you must know 2 simple things:

  1. What data you hold
  2. Where your data is

I should hurriedly add that I don’t just mean sensitive data now – all data deserves to be classified because whether you’re a full stack developer adding a column to a table you’ve never used before, an auditor trying to carry out a Data Protection Impact Assessment (DPIA) and trying desperately to include the database, or you’re a BI developer setting up some new reports or processes, you’re going to need to know about the data. This is where people have questions, and this is where you shouldn’t have to reply on anecdotal knowledge or being pushed around from one person to another at the company who supposedly “might be able to help“.

Better insights into data leads to better practices, less waiting (waste reduction) and greater insight. When we then act on this insight we move faster and deliver greater value in our pipelines.

Have you picked up on the trend yet? How all of these are going to end? Well don’t spoil the ending for those who haven’t, they’ll have to wait fort he conclusion!

3 – Move faster and better enable the DevOps pipeline

It’s apt that I’m listening to an amazing EDM remix of the Green Hill Zone from Sonic when writing this section, but isn’t this just what we need as a business? We want to be able to move faster, or to put it in more ‘agile’ terms, we need to be able to pivot and adapt with only a moments notice. Until now, the database has been a monolithic and difficult to steer behemoth, and it shows in our processes.

Yank Tug Of War GIF by BEERLAND

A tangible example of what I mean when I say “move faster”, is branching. It’s fairly commonplace now for a developer to be able to clone a repository and checkout a specific branch, create new branches etc. without fear of switching between those branches and what it might entail. On a dev environment, especially when one is working database-first with your changes (it does make sense to know how the changes will impact the database first – that’s all I’m saying) it is, without a reasonable process in place, exceptionally difficult to easily switch between branches and keep work separate.

This often forces developers to stick to one environment when changes are all made in tandem and can play havoc when it comes to capturing those changes in the right place – a manual state-based comparison of a dev database with multiple branches of work on it to a target upstream could be disastrous.

This is why taking advantage of something like database virtualization, allowing you to spin up copies of databases in seconds, could be the answer. You can automate the provisioning of environments as githooks, during Pull Request automation or as release candidates and the experience will be exactly the same across the board – boom *code base*, fresh and ready to go. When developers can move fast, value comes through a whole lot faster.

4 – Minimize space constraints on new copies, on premise or in the cloud

Space is always a big player in these conversations, and for some it’s enough to boil it down to “well just how much space can we save??” and that’s enough to put a dollar value on the ROI, and people storm ahead with a solution (that’s not always right for them).

But space is a very real problem, much as we (as technology professionals) like to believe that in these modern times of cloud-native solutions, easily scaled serverless-compute VMs and Big Data Clusters, we know there are still a LOT of people out there firefighting legacy, necessary technology and wrestling with what they CAN get out of backups or their SAN tech.

Even using cloud providers costs money, data egress and ingress costs $, BLOB storage costs $, additional security measures cost $. So it’s really not ideal when our databases, for historical reasons or by virtue of the sheer AMOUNT of data we hold and process, are 5, 10, 50, 100TB+, because we’re going to be struggling with this Dev/Test issue still for years to come.

As before with point 3, database virtualization has come of age and has now we have a lot of different solutions from containerization through DBaaS that can aid us in minimizing the amount of space that we ACTUALLY require, meaning we have less money that we need to pour into maintaining large, unwieldy Dev/Test environments or paying a large bill for the privilege of doing so in the cloud (and when developers will be using their dev machines anyway it just makes sense to see what we can do to leverage this existing hardware).

Whilst this one doesn’t directly add specific value to the end of the pipeline, or speed up this delivery, it can help reduce overhead costs associated with the infrastructure needed when providing this value.

5 – Work on realistic data without worrying about data breaches

This is probably one of the most obvious reasons given that I tend to blog about data regulations and compliance ALL THE TIME but I feel like I need to keep saying this.

If you remove all of the data from development and test database copies, this will not help with development and developers will have nothing meaningful to go on, nor any testing that isn’t limited to pre-defined values.

If you leave all of the data in development and test database copies, all you’re doing is duplicating your attack surface area and creating a lot of potential risks for that data to be surfaced where it shouldn’t be – on the internet, in screenshots, emails and of course, hacked.

So there needs to be a happy medium where we can have both the useful data that gives us insight and intelligence of a full data set, the business logic, trends, demographics etc. that we need during testing or analytics – but it should also be sanitized so that data subjects contained therein cannot be re-identified. Static masking, applied to lower environments allows us to retain the data with none of the data.

The Next Generation Data GIF by Star Trek

Protective measures can be built into the DevOps process from the very beginning as you’ve already seen right here on my blog; so as long as it is a part of the process, and we have multiple controls (or guard rails) that allow us to operate safely and quickly without fearing that same speed will cause us to release any sensitive information, allowing us to focus on one thing, value.

Conclusion

As you’ve seen above, it all comes down to time and money but there are many ways to save and speed up within a DevOps process by means of a good, solid database provisioning process. Whilst none of these reasons comes with a fixed ROI (unless you have ALL of your pre-prod database storage costs to hand) they contribute to something far better than that:

The ease of delivering value.

In a world where we can be concerned about everything, and where it’s hard to keep up with emerging technologies – it makes sense to start pruning away blockers to the process, the problems that are stopping us from delivering value faster – THAT is the theme and point of this blog post; our end users. We’re already delivering excellent value to them, we trust our developers and teams, but what’s stopping them from moving faster with database changes? Adopting a good provisioning process will mean you start to notice all of the above become true of your database development lifecycle.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s